Что такое волоконный лазер?

26/01/2022
Петров Сергей Игоревич
Рис.1. Оптоволокно.


Лазерное оборудование широко применяется в сфере лазерной маркировки и резки металлов.  Это связано с использованием лазерных излучателей определенного типа. В частности, волоконных лазеров. Данный типа лазеров относится к группе твердотельных. 

Промышленные маркираторы на основе твердотельного лазера бывают: компактными и стационарными. В зависимости от характера производства оборудование изготавливают по определенным форм-факторам.

Стационарные маркираторы можно оснастить дополнительным оборудованием для маркировки серийных партий.

Генерация энергии оптоволоконного лазера происходит за счет диодной накачки активной среды, в качестве которой выступает встроенное оптическое волокно. Волоконные лазеры имеют длину волны 1,064 мкм, что позволяет добиваться на выходе высокой мощности луча. 

Оборудование генерирует световой поток, обеспечивая высокое качество излучения. Сами излучатели обладают высоким рабочим ресурсом.

 

Что такое оптоволоконный лазер?

Волоконный (оптоволоконный) лазер используется в различных отраслях промышленности, его КПД составляет около 70%.

Устройство состоит из двух частей: ламп накачки и оптического кабеля. Внутри которого расположено светопроводящее волокно и сердцевина из прозрачного кварца. Лазерный луч обладает высокой точностью, его можно направить 

на конкретный участок обрабатываемой поверхности. На дифракционную решетку  на концах центрального стержня  особым образом нанесены штрихи или насечки. 

С их помощью происходит быстрое отражение луча от поверхности - это позволяет поддерживать необходимую длину волны в течение всего процесса работы, а также сохранить монохромность луча.

Волоконный лазерный аппарат для обработки материалов - это станок для создания одномодового излучения. Оптоволоконные устройства для обработки материалов занимают около 25% всего рынка производственного оборудования. Они обладают максимально высокие рабочие и качественные характеристики.

Волоконные лазеры представлены в разделе комплектующих - излучателей, а также в 80% продукции Laser-TOR станков для лазерной маркировки, гравировки и лазерной резки металла, сварки и очистки.

 

Устройство оптоволоконного лазера

Схема устройства состоит из трех основных компонентов: модуля накачки, активной среды и оптического резонатора.

 


Рис. 2.  Схема лазерного модуля. 1— активное волокно. 2 — зеркала Брэгга. 3 — блок накачки


 

  1. Модуль накачки. Источником накачки оптических волноводов служат широкополосные светодиоды (лампы накачки) или лазерные диоды с одномодовым излучением с высокой  яркостью и большим ресурсом выработки.
  2. В составе активной среды содержится светопроводящее оптоволокно и волновод накачки. Волоконные световоды легируются добавками редкоземельных элементов или висмута. Плотность легирования зависит от длины изготавливаемого оптоволокна. Во многих промышленных станках используется иттербий. Оптоволокном является сверхчистый прозрачный плавленый кварц, который характеризуется минимальными оптическими потерями. Его верхний предел мощности накачки определяется предельной мощностью излучения на единицу площади, при которой материал не разрушается. Он составляет несколько киловатт.
  1. Оптический резонатор создает положительную обратную оптическую связь, в результате которой лазерный усилитель превращается в лазерный генератор. Чаще всего в конструкции резонатора используют брэгговские зеркала, кольцевые резонаторы и резонаторы типа Фабри-Перо. На концах центрального стержня чаще всего делают брэгговскую (дифракционную) решетку, представляющую собой нанесенные определенным образом штрихи. Участки с насечками имеют измененную отражательную способность и выступают в качестве резонаторов, отражая свет, распространяющийся вдоль волокна, и поддерживая требуемую длину волны. Таким образом излучаемый активным веществом свет фокусируется в один узкий пучок. Резонатор определяет спектр, поляризацию и направленность генерируемого излучения.
  2. Протяженность оптического кабеля составляет от 2 метров до 40, а иногда доходит и до 100 метров, поэтому часто встает вопрос об оптимизации пространства. Тогда его скручивают кольцами и укладывают сверху на оборудование.

 


Рис. 3.  Схема накачки лазера, основанного на волокне с двойным покрытием


 

Принцип преобразования светового излучения в лазерное в волоконном излучателе имеет процент полезной энергии в 80-90%. При нем не происходит искажения волнового фронта, а мощность луча не теряется на всем оптическом маршруте. В ходе генерации лазера не возникает проблем. Выходная мощность излучения ограничена лишь  доступной мощностью источника оптической накачки;

 

Отличия волоконного и CO2 лазеров

Отличия волоконного и CO2 лазеров состоят в принципе работы, устройстве, использовании разных материалов и коэффициенте полезного действия. Основа:

  • волоконного лазера - оптически активное волокно,
  • лазера CO2 – смесь газов, главным из которых является углекислый.

Длина волны лазеров  отличается в десять раз. Показатель газового составляет 10,6 кмк,  а волоконного - 1,06 кмк. Меньший размер длины луча обеспечивает высокую точность при обработке, увеличенную скорость обработки металлов и камня, а поверхность вокруг обрабатываемого участка остается нетронутой и не нагревается. Однако, при обработке НЕметаллов, предпочтение лучше отдать лазеру CO2. Волоконный лазер не справляется с бумагой, стеклом, фанерой, синтетической или натуральной тканью, деревом. И это его главный недостаток. Зато он подходит для обработки таких материалов как серебро, медь, латунь. Газовый лазер, в свою очередь, не может их обрабатывать.

 


Рис. 4.  Устройство лазерного модуля


 

Понятный принцип действия без использования сложной оптической системы зеркал делает использование волоконного лазера более простым по сравнению с CO2 лазером. Еще один плюс волоконного лазера - это его компактная конструкция, которая может устанавливаться в любом станке с маленьким корпусом или сварочном аппарате.Благодаря простой установке его можно использовать в небольших промышленных центрах, ювелирных мастерских (при изготовлении украшений, нанесении гравировки на поверхность).

КПД волоконного лазера около 70%, для газового лазера этот показатель  почти вдвое ниже.

 

Видео

Преимущества

Волоконный лазер – это производительный лазер , часто использующийся в промышленности. Он относится к твердотельным аппаратам и имеет ряд преимуществ перед газовыми лазерами. Он обладает оптимальной длиной волны, одинаковой на протяжении почти всего рабочего процесса. Работа в таком режиме позволяет без потерь передавать энергию  лазерного луча на большее расстояние  и фокусировать его до диаметра в несколько микрон в очень маленькую точку, что важно при гравировке, а также обработке труднодоступных участков. Мощность луча волоконного лазера оптимальна. Высокая частота повторения импульсов стабильно выполняет любые  задачи по сварке, маркировке и резке различных материалов. 

Другие преимущества волоконного лазера - его универсальность и простота в обслуживании. Он не зависит от уровня влажности или температуры воздуха, поэтому может использоваться везде - от небольшой мастерской до промышленного помещения. Чистка волоконному лазеру не требуется. Кроме того, в любой момент волоконный лазер можно модернизировать и подключить на другой технологический процесс. Он не требует юстировки и сложных пусконаладочных работ.

 


Рис. 5.  Устройство лазерного модуля


 

Использование лазера безопасно, так как излучение от него быстро поглощается различными металлами.

 


Рис. 6.  Волоконные излучатели


 

Волоконный лазер вне зависимости от выбранного скоростного режима обеспечивает 

прецизионную точность позиционирования. Обладает высокой мощностью свыше 1000 кВт и длительным  рабочим ресурсом более 100000 часов. Многофункциональный лазер решает сразу же несколько задач - он может резать, гравировать и перфорировать материалы, паять или выполнять сварочные работы. Система 

воздушного охлаждения не требует замены воды, выделения специального места для емкости под нее и другими требованиями водяных терморегуляторов. 

Волоконный лазер работает бесшумно и минимизирует наличие производственных отходов.

 

Применение

Волоконный лазер - это универсальный инструмент, который работает с металлами различной толщины и уровня плотности, а также с искусственным и натуральным камнем, стеклом и пластиком.

Он используется в:

  • Строительстве автомобилей, судов, воздушного транспорта, в том числе ракет
  • Изготовлении морских и железнодорожных вагонов, контейнеров для перевозки
  • Выпуске ювелирных изделий и нанесении гравировки
  • Производстве строительных и рекламных металлических конструкций 
  • Военно-промышленном комплексе

Вот лишь некоторые области применения оптоволоконного лазера:

микрообработка материалов, нанесение графической маркировки, микрофрезеровка, нанесение надписей на приборных панелях, художественное структурирование поверхностей. Маркировочная табличка и шильдики, идентифицирующие штрих-коды, обработка тонких фольгированных материалов и многое другое.


Комментарии

Сообщения не найдены

Написать отзыв

Подписывайтесь

Введите адрес электронной почты, чтобы получать информацию о специальных предложениях и акциях.